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Abstract: This research paper delves into the exploration of various computational 
models utilized in creating skin disease classifiers, aiming to enhance diagnostic accuracy 
and optimize potential accessibility to isolated patients. By investigating the different types 
of computational models employed in this context, this paper aims to shed light on how 
these models contribute to more accessible and efficient diagnoses of skin conditions, 
enabling healthcare professionals to provide widespread patient care. Furthermore, the 
paper will address the challenges encountered in the development of effective skin 
disease classifiers using computational models, such as data quality issues, model 
interpretability, and generalizability across diverse populations. Through a 
comprehensive analysis of these aspects, this research endeavors to advance our 
understanding of the potential of computational models in improving skin disease 
diagnosis and ultimately enhancing healthcare outcomes for individuals affected by 
dermatological conditions. Results showed that ResNet18 demonstrated higher overall 
accuracy on HAM10000 when compared to the confusion matrix and Grad-CAM 
visualizations of both models.
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1. Introduction 
 
 Skin diseases, such as acne, 
alopecia, bacterial skin infections, 
decubitus ulcers, fungal skin diseases, 
pruritus, psoriasis, scabies, urticaria, viral 
skin diseases, and skin cancer lesions, 
pose a significant public health concern 
worldwide, with recent years showing a rise 
in such diseases due to worsening living 
conditions and lack of access to healthcare 
[1]. Skin diseases are the fourth most 
common cause of all human diseases, 
affecting nearly one-third of the world's 
population; however, their burden is often 
underestimated [2]. Skin and 
subcutaneous diseases lead to profound 
long-term alterations even after the disease 
has resolved, affecting not only the 
physical health but also the mental health 
and quality of life of the patient, placing a 

high burden on patients' families and 
national healthcare systems globally. The 
burden of skin conditions was high in both 
high- and low-income countries, indicating 
that prevention of skin diseases should be 
prioritized. Hence, widening the knowledge 
of skin disease epidemiology is critical for 
policy development and resource 
allocation, which ultimately leads to 
disease prevention [1]. 
 

However, in this digital age, the 
development of computational models has 
innovated the field of dermatology by 
offering new approaches to skin disease 
classification. Through the potential 
concept of integrating A.I with skin disease 
classification, the prevention of common 
skin diseases may be accomplished. This 
research paper utilizes Convolutional 
Neural Networks (CNN) and Residual 
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Networks (ResNet) to achieve its findings. 
CNNs are deep learning architectures that 
learn directly from data. CNNs are useful 
for detecting patterns in images and 
recognizing objects, classes, and 
categories [3]. Residual Network (ResNet) 
is a deep learning model designed for 
computer vision applications. It is a CNN 
architecture capable of supporting 
hundreds or thousands of convolutional 
layers. ResNet uses "skip connections," 
which allows it to stack multiple identity 
mappings, skip those layers, and reuse the 
activations from the previous layer, 
resulting in improved performance for a 
larger number of layers [4]. 
 

2. Methods and Experimental 
Details  
 
We have accomplished two models 

on identifying cancerous skin lesions using 
Python, incorporating libraries like OpenCV 
for traditional computer vision and PyTorch 
that serve as key tools for implementing 
deep learning. The goal is to adjust and 
compute the dataset we have chosen into 
a machine learning model, then evaluate its 
performance based on accuracy and 
compare which model has the fastest 
learning speed.   
 

 
Figure 1. Diagram of the computation process 
 
     2.1. Data Collection and Analysis 
 

For this project, we collected the 
case data and images for skin lesions from 
the HAM10000 using the Harvard 
Dataverse online query tool. The dataset 
comprises of 10,015 dermatoscopic 
images that was publicly released by the 
Harvard database in June 2018 to supply 
reliable training data for the automation of 
skin cancer lesion classification. In addition 
to the 10,015 images, a metadata file 
containing demographic information for 
each lesion was included, which were 
verified through histopathology (histo), 
while the ground truth for other cases was 
determined through follow-up examination 
(follow_up), expert consensus 
(consensus), or confirmation by in-vivo 
confocal microscopy (confocal). [5] The 
selection of skin lesions and diseases 
reflects the prevalence, the case definition 
and the availability of the data used for the 
development of the models. 
 

To begin, we first imported the 
HAM10000 Image Dataset into the code, 
which contains seven classes of skin 
cancer lesions: Melanocytic nevi, 
Melanoma, Benign keratosis-like lesions, 
Basal, cell carcinoma, Actinic keratoses, 
Vascular lesions, Dermatofibroma. As 
numerical representation is required to be 
usable for machine learning/artificial 
intelligence model, the classes must first be 
encoded into categorical outcomes. The 
following model shows code that uses 
sckit-learn, a machine learning library, 
utilizing LabelEncoder from 
sklearn.preprocessing package module to 
encode categorical labels into numerical 
values. 
 



 

 
Figure 2. Sckit-learn code using LabelEncoder 
from sklearn.preprocessing package module 
 

Once the metadata has been 
converted into numerical representation, 
we must then examine the experimental 
validity of the HAM10000 dataset in order 
to detect any potential biases that may 
occur during machine learning. To do this, 
a quick Exploratory Data Analysis (EDA) 
had to be conducted on the metadata. 
Exploratory Data Analysis (EDA) involves 
systematically examining and visualizing a 
dataset to understand its structure, identify 
patterns, detect anomalies, and gain 
insights into the underlying relationships 
among variables. It requires various 
plotting functions (plot(), histplot()) to 
create visualizations for different aspects of 
the metadata using the numerical values of 
the dataset in Figure 2. The following code 
shows the implemented kernel: 

 

 

 
Figure 3. Code and tables used to examine 
the experimental validity of the HAM10000 
dataset 
 

As indicated by Figure 3, the 
extraction of the metadata using EDA 
allows a visual representation of the 
dataset. The gender and age distribution 
seems to be at balance, meaning that the 
data comes from a relatively balanced set 
of male and female with a variety of ages. 
However, the HAM10000 Image Dataset 
had unproportionately high occurrences 
(class imbalance) of the lesion type 
"Melanocytic Nevi" compared to other 
types, which was an unusual occurrence 
for medical datasets. Class imbalances 
occur when certain classes have 
significantly fewer instances than others, 
creating a risk for the machine learning 
model to be biased towards the majority 
classes.  
 

To tackle this problem, class 
weights for different skin conditions needed 
to be defined and adjusted based on their 
frequency in the dataset. We assigned 
higher weights to less frequent conditions 
using an iterative method by implementing 
data structure queue with supportive 
function enqueue and dequeue, enabling 
the model to prioritize learning from 
underrepresented classes during training. 
This approach aims to enhance the model's 
ability to make accurate predictions across 
all skin conditions, contributing to a more 



 

balanced and effective classification 
system. 

 

Figure 4. Code used to define and adjust 
class weights of different skin conditions 
based on frequency 

   2.2. Standardization and Optimization 
of Dataset 

To overcome the challenge of 
limited medical data and improve our 
model's learning, we used a technique 
called data standardization and data 
augmentation. Through PyTorch’s function 
that combines multiple transformations into 
a single callable object, we adjusted the 
images' brightness, size, and colors using 
standard values from a large image 
database. Since all our images follow a 
similar pattern, the model will be able to 
learn at a faster rate with a simpler 
architecture. Next, we applied data 
augmentation to our training images. This 
involved creating variations of our images 
by flipping them horizontally and rotating 
them, which assists our model in becoming 
better at recognizing different skin 
conditions.  

Other than augmenting and 
standardizing the image, we also carefully 
organized our dataset into distinct groups 
to ensure effective learning. This process 
involves creating three essential sets: the 
'train' set, the 'validation' set, and the 'test' 
set for evaluating its ability to recognize 
new, unseen images. The following code 
defines a custom sampler, 

StratifiedSampler, used for stratified 
sampling of data. It takes class_vector as 
input, which represents the class labels of 
the data. The test_size parameter 
determines the proportion of data to be 
held out for testing. The gen_sample_array 
method generates stratified train-test splits 
based on the class distribution. The 
sampler ensures that each split has 
approximately the same distribution of 
classes as the original data. It then splits 
the dataset into training, validation, and test 
sets using these generated indices. Finally, 
it prints the number of images in each set, 
fully rotated and loaded into memory. This 
enables efficient and controlled feeding of 
data to the model during the training and 
evaluation phases. 

 
Figure 5. Images of code and skin conditions 
arranged specifically to ensure effective 
learning 

     2.3 - Learning Approaches towards 
Data Models 



 

 
     2.3.1. CNN LeNet Model 
 

The Convolutional Neural Network 
(CNN) LeNet is a class of neural networks 
designed specifically for image recognition 
tasks, inspired by the human visual system. 
The structure of LeNet compromises of 
several  key components: convolutional 
layers for detecting visual features, max-
pooling layers for spatial down-sampling, 
and fully connected layers for decision-
making. The architecture is articulated 
within the init method, while the forward 
method defines how input data traverses 
through these layers [3]. 

 
The following code sets up the CNN 

model for artificial learning and 
incorporates a method for calculating the 
number of features within a flattened layer. 
Once the network is defined, an instance 
called net is created, and the entire 
structure is deployed to a specific 
computing device, often a Graphics 
Processing Unit (GPU) for enhanced 
computational efficiency. 

 

 
Figure 6. Code to set up CNN LeNet  

Before initiating image classification 
training using the HAM10000 dataset, 
establishing the loss function and choosing 
an optimizer with the Cross-Entropy and 
the Adam functions are crucial. These 
components play critical roles in the 
training process, influencing how the model 
learns and adapts over time. The Cross-

Entropy loss defines how much the model's 
predictions deviate from the ground truth 
(sample image), which help quantify the 
model's performance and utilizes the 
following formula: 

 
 [7] 

 
The minimization of the Cross-

Entropy loss indicates a higher accuracy on 
unseen images. This, in turn, steers the 
learning process towards producing 
probability distributions that align closely 
with the true class distributions in the 
training data. Defining the Adam optimizer 
before training ensures that the CNN 
follows a strategic path during optimization, 
adjusting its parameters effectively based 
on the observed gradients. 

 
Afterwards, we can start to train the 

model. The provided code is a training loop 
for the CNN LeNet using PyTorch. Its 
primary goal is to train the network over 10 
epochs on HAM10000 Image dataset and 
monitor its performance: 

1. Initialization: The code sets the 
number of training epochs 
(num_epochs) and initializes lists to 
store training and validation 
metrics, including accuracy and 
loss. 

2. Training Loop: For each epoch, the 
code iterates over batches of 
training data (train_data_loader), 
computes the loss, and performs 
backpropagation to update the 
model's parameters. Training 
metrics such as running loss and 
accuracy are calculated and loaded 
for each epoch. 

3. Validation: After each epoch, the 
code evaluates the CNN model on 
a separate validation dataset 
(validation_data_loader) to assess 



 

its performance on unseen data. 
Validation metrics, including loss 
and accuracy, are printed to gauge 
how well the model generalizes to 
new data. 

4. Monitoring: The code keeps track of 
training and validation metrics over 
epochs, storing them in lists for 
later analysis.  

The code then produces a table detailing 
the progress of validation loss to provide a 
learning overview of how accurately the 
CNN model gauged unseen samples, 
which is key for the final developments of 
the analysis in this model. 

 

 
Figure 7. Code and graph to provide metric 
insight to CNN model training 

     2.3.2 ResNet18 Model 
 

Unlike the CNN model, the 
ResNet18 architecture is a pre-built model 
that uses residual blocks, where the input 

to a layer is combined with the output 
through a shortcut connection. This 
shortcut allows the network to directly learn 
the difference between the input and output 
of a layer. The residual connections enable 
the smooth flow of gradients during 
backpropagation, which could sometimes 
be absent in training very deep learning. [ 

 
To achieve this, we used the 

torchvision library to load the pre-trained 
ResNet18 model with weights from 
ImageNet via pretrained=True. The 
model's original fully connected layer is 
then adjusted to match the number of 
classes for the specific task (from 512 to 
num_classes). Finally, the model is 
transferred to a specified device (GPU or 
CPU) for efficient computation. This setup 
enables the use of ResNet18's feature 
extraction capabilities while tailoring it to 
the unique requirements of the 
classification task. 

 

 
Figure 8. Code used to define the ResNet18 
model 

We then assessed the performance 
of the ResNet model using the validation 
set. Similar to our method with the CNN 
LeNet model, a separate validation dataset 
(validation_data_loader) is employed to 
assess the model's performance on 
unseen data, gauging validation loss and 
accuracy. The script also logs above-
mentioned metrics, capturing the evolving 
dynamics of the model. It uses an iteration 
method through batches of validation data 
to make predictions using the model, 
calculating the loss and accumulating the 
number of correct predictions. Following 
that, a graph is produced based on the 
model’s progress. These metrics provide 
and load outcomes into how well the model 



 

generalizes to unseen data, and play a 
crucial role in the results.

 
Figure 9. Code and graph to provide metric 
insight to ResNet18 model training 

3. Results & Discussion 
      
     3.1 Confusion Matrix 
 

 
Figure 10. Confusion matrix of the CNN LeNet 
model 

 
Figure 11. Confusion matrix of the ResNet18 
model 

The confusion matrices of the CNN LeNet 
and ResNet18 models can be seen in 
Figures 7 and 8. A confusion matrix is a 
table that summarizes the accuracy of the 
model's predictions, showing the number of 
true positive, true negative, false positive, 
and false negative predictions for each 
class. This gives a detailed breakdown of 
the model's classification accuracy and 
potential areas for misclassification across 
classes. The confusion matrix consists of 
diagonal and off-diagonal cells. The 
diagonal cells show the number of correct 
predictions in each class. The lighter or 
higher the value in these cells, the more 
accurately the model classifies instances 
from that class. Off-diagonal cells 
represent misclassification. Darker or lower 
values in these cells indicate instances 
where the model made errors [5]. To 
generate each confusion matrix, both CNN 
LeNet (net) and ResNet18 (net) are applied 
to a test dataset (test_data_loader), and 
the resulting predictions are compared with 
the actual labels.  
 

Figure 7 shows that the CNN LeNet 
model performs best at identifying classes 
nv and bcc because they have the highest 
values in their diagonal cells, as indicated 
by their bright color in comparison to the 
rest of the class. However, many of the off-
diagonal cells are darker or have lower 
values, indicating that the model made 
mistakes. As illustrated in Figure 8, 
ResNet18 outperforms the initial CNN 



 

LeNet model, as evidenced by brighter 
diagonal cells. This demonstrates how the 
model more accurately classifies the image 
provided to it based on the actual 
conditions. The ResNet18 model also 
performed exceptionally well in classifying 
the nv class, as evidenced by the brightest 
cell color compared to the rest of the class. 
The brighter off-diagonal cells also indicate 
fewer mistakes were made in comparison 
to the CNN LeNet model. Overall, this 
shows that the ResNet18 model works 
more efficiently with fewer errors compared 
to the CNN LeNet model when classifying 
skin conditions. 

 
     3.2 Grad-CAM Visualizations 

Figure 12. Grad-CAM visualizations of the CNN 
LeNet model 

 

Figure 13. Grad-CAM visualizations of the 
ResNet18 model 

The confusion matrices of the CNN 
LeNet and ResNet18 models can be seen 
in Figures 9 and 10. GradCAM is a 
visualization technique for interpreting the 
decision-making process of CNNs, 
particularly in image classification tasks. It 
generates heatmaps, highlighting regions 

of an input image that strongly influence the 
model's predictions. It helps highlight  
which features the model focuses on during 
classification. GradCAM enhances the 
explainability and trustworthiness of CNN-
based image classification models [6]. The 
images on the left in both figures are Grad-
CAM visualizations created for the 
specified target layer ("conv2") and target 
class. This visualization is created using 
the Grad-CAM technique on a heat map-
style visual. It highlights the regions of the 
original image that made the most 
significant contribution to the model's 
prediction for the specified class. The 
warmer the color, the more important that 
region is to the model's ability to predict the 
image's classification.  

 
The image on the right in both 

figures is the original image of the skin 
diseases used. Through comparing the 
ground truth label of the actual image with 
the prediction made in the Grad-CAM in 
both the CNN LeNet and ResNet18 
models, both models are able to correctly 
predict the skin condition. As seen in both 
figures, the Grad-CAM is able to represent 
the shape of the skin conditions through the 
differences in colors. 
 

4. Conclusion 
 
It can be concluded from the data 

collected that ResNet18 produced higher 
overall accuracy on HAM10000 than CNN 
LeNet when used to create skin disease 
classifiers. This difference is most apparent 
when comparing the two models ’ 
confusion matrix. It’s clear that the 
ResNet18 model achieved more accurate 
results compared to its CNN LeNet model 
counterpart. This could be seen through 
the brighter diagonal cells, which indicate 
that the model classifies the image 
provided to it based on the actual 



 

conditions more accurately. The CNN 
LeNet model performs visibly worse due to 
having significantly lower values for its 
diagonal cells. However, when comparing 
the Grad-CAM visualizations of both 
models, they performed similarly, as both 
models correctly predicted the skin 
conditions. However, ResNet18 was able 
to highlight the center parts of the image in 
warmer colors, showing that it can identify 
important ‘zones’ more efficiently and 
precisely, as seen in Figure 13. The CNN 
model on the other hand highlighted the 
surrounding skin, rather than the actual 
lesion, demonstrating a less precise 
identification. Therefore, ResNet18 has 
shown to have more accurate results 
overall on HAM10000 and should be used 
in comparison to CNN LeNet when 
classifying skin diseases. However, some 
limitations of the research could be the 
limited samples of medical data on the skin 
illnesses, which may lead to a narrower 
and less accurate scope of identifiable 
diseases by the training model. As seen in 
Figure 7 and Figure 9, both models 
experienced fluctuating rates of validation 
accuracy, despite the training loss 
decreasing. The lack of variety in the 
samples provided may have led to the 
models learning the samples, rather than 
the characteristics of identifying the 
illnesses. Furthermore, being able to 
achieve an adequate accuracy with the 
models would require a substantial amount 
of time and budget. Hopefully, ResNet 
architecture could be used more often as a 
learning model to assist healthcare 
professionals in a way that the public can 
access anywhere at all times (i.e. an app, 
etc.). This way, we can gain more 
information on skin diseases to tackle the 
public health concerns they cause 
worldwide.  
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