

Development of Computational Models in Creating Skin Disease Classifiers Using
CNN and ResNet Architecture

1. Elaine Faythe Hartono, Sekolah Pelita Harapan Kemang Village, Jakarta,

Indonesia (elaine.hartono@student.sph.ac.id)
2. Joanna Natasha Marjono, Sekolah Pelita Harapan Sentul City, Bogor, Indonesia

(joanna.marjono@student.sph.ac.id)

Abstract: This research paper delves into the exploration of various computational
models utilized in creating skin disease classifiers, aiming to enhance diagnostic accuracy
and optimize potential accessibility to isolated patients. By investigating the different types
of computational models employed in this context, this paper aims to shed light on how
these models contribute to more accessible and efficient diagnoses of skin conditions,
enabling healthcare professionals to provide widespread patient care. Furthermore, the
paper will address the challenges encountered in the development of effective skin
disease classifiers using computational models, such as data quality issues, model
interpretability, and generalizability across diverse populations. Through a
comprehensive analysis of these aspects, this research endeavors to advance our
understanding of the potential of computational models in improving skin disease
diagnosis and ultimately enhancing healthcare outcomes for individuals affected by
dermatological conditions. Results showed that ResNet18 demonstrated higher overall
accuracy on HAM10000 when compared to the confusion matrix and Grad-CAM
visualizations of both models.

Keywords: Computational models, Skin disease classifiers, CNN, ResNet, Python

1. Introduction

 Skin diseases, such as acne,
alopecia, bacterial skin infections,
decubitus ulcers, fungal skin diseases,
pruritus, psoriasis, scabies, urticaria, viral
skin diseases, and skin cancer lesions,
pose a significant public health concern
worldwide, with recent years showing a rise
in such diseases due to worsening living
conditions and lack of access to healthcare
[1]. Skin diseases are the fourth most
common cause of all human diseases,
affecting nearly one-third of the world's
population; however, their burden is often
underestimated [2]. Skin and
subcutaneous diseases lead to profound
long-term alterations even after the disease
has resolved, affecting not only the
physical health but also the mental health
and quality of life of the patient, placing a

high burden on patients' families and
national healthcare systems globally. The
burden of skin conditions was high in both
high- and low-income countries, indicating
that prevention of skin diseases should be
prioritized. Hence, widening the knowledge
of skin disease epidemiology is critical for
policy development and resource
allocation, which ultimately leads to
disease prevention [1].

However, in this digital age, the
development of computational models has
innovated the field of dermatology by
offering new approaches to skin disease
classification. Through the potential
concept of integrating A.I with skin disease
classification, the prevention of common
skin diseases may be accomplished. This
research paper utilizes Convolutional
Neural Networks (CNN) and Residual

mailto:elaine.hartono@student.sph.ac.id
mailto:joanna.marjono@student.sph.ac.id

Networks (ResNet) to achieve its findings.
CNNs are deep learning architectures that
learn directly from data. CNNs are useful
for detecting patterns in images and
recognizing objects, classes, and
categories [3]. Residual Network (ResNet)
is a deep learning model designed for
computer vision applications. It is a CNN
architecture capable of supporting
hundreds or thousands of convolutional
layers. ResNet uses "skip connections,"
which allows it to stack multiple identity
mappings, skip those layers, and reuse the
activations from the previous layer,
resulting in improved performance for a
larger number of layers [4].

2. Methods and Experimental
Details

We have accomplished two models

on identifying cancerous skin lesions using
Python, incorporating libraries like OpenCV
for traditional computer vision and PyTorch
that serve as key tools for implementing
deep learning. The goal is to adjust and
compute the dataset we have chosen into
a machine learning model, then evaluate its
performance based on accuracy and
compare which model has the fastest
learning speed.

Figure 1. Diagram of the computation process

 2.1. Data Collection and Analysis

For this project, we collected the
case data and images for skin lesions from
the HAM10000 using the Harvard
Dataverse online query tool. The dataset
comprises of 10,015 dermatoscopic
images that was publicly released by the
Harvard database in June 2018 to supply
reliable training data for the automation of
skin cancer lesion classification. In addition
to the 10,015 images, a metadata file
containing demographic information for
each lesion was included, which were
verified through histopathology (histo),
while the ground truth for other cases was
determined through follow-up examination
(follow_up), expert consensus
(consensus), or confirmation by in-vivo
confocal microscopy (confocal). [5] The
selection of skin lesions and diseases
reflects the prevalence, the case definition
and the availability of the data used for the
development of the models.

To begin, we first imported the
HAM10000 Image Dataset into the code,
which contains seven classes of skin
cancer lesions: Melanocytic nevi,
Melanoma, Benign keratosis-like lesions,
Basal, cell carcinoma, Actinic keratoses,
Vascular lesions, Dermatofibroma. As
numerical representation is required to be
usable for machine learning/artificial
intelligence model, the classes must first be
encoded into categorical outcomes. The
following model shows code that uses
sckit-learn, a machine learning library,
utilizing LabelEncoder from
sklearn.preprocessing package module to
encode categorical labels into numerical
values.

Figure 2. Sckit-learn code using LabelEncoder
from sklearn.preprocessing package module

Once the metadata has been
converted into numerical representation,
we must then examine the experimental
validity of the HAM10000 dataset in order
to detect any potential biases that may
occur during machine learning. To do this,
a quick Exploratory Data Analysis (EDA)
had to be conducted on the metadata.
Exploratory Data Analysis (EDA) involves
systematically examining and visualizing a
dataset to understand its structure, identify
patterns, detect anomalies, and gain
insights into the underlying relationships
among variables. It requires various
plotting functions (plot(), histplot()) to
create visualizations for different aspects of
the metadata using the numerical values of
the dataset in Figure 2. The following code
shows the implemented kernel:

Figure 3. Code and tables used to examine
the experimental validity of the HAM10000
dataset

As indicated by Figure 3, the
extraction of the metadata using EDA
allows a visual representation of the
dataset. The gender and age distribution
seems to be at balance, meaning that the
data comes from a relatively balanced set
of male and female with a variety of ages.
However, the HAM10000 Image Dataset
had unproportionately high occurrences
(class imbalance) of the lesion type
"Melanocytic Nevi" compared to other
types, which was an unusual occurrence
for medical datasets. Class imbalances
occur when certain classes have
significantly fewer instances than others,
creating a risk for the machine learning
model to be biased towards the majority
classes.

To tackle this problem, class
weights for different skin conditions needed
to be defined and adjusted based on their
frequency in the dataset. We assigned
higher weights to less frequent conditions
using an iterative method by implementing
data structure queue with supportive
function enqueue and dequeue, enabling
the model to prioritize learning from
underrepresented classes during training.
This approach aims to enhance the model's
ability to make accurate predictions across
all skin conditions, contributing to a more

balanced and effective classification
system.

Figure 4. Code used to define and adjust
class weights of different skin conditions
based on frequency

 2.2. Standardization and Optimization
of Dataset

To overcome the challenge of
limited medical data and improve our
model's learning, we used a technique
called data standardization and data
augmentation. Through PyTorch’s function
that combines multiple transformations into
a single callable object, we adjusted the
images' brightness, size, and colors using
standard values from a large image
database. Since all our images follow a
similar pattern, the model will be able to
learn at a faster rate with a simpler
architecture. Next, we applied data
augmentation to our training images. This
involved creating variations of our images
by flipping them horizontally and rotating
them, which assists our model in becoming
better at recognizing different skin
conditions.

Other than augmenting and
standardizing the image, we also carefully
organized our dataset into distinct groups
to ensure effective learning. This process
involves creating three essential sets: the
'train' set, the 'validation' set, and the 'test'
set for evaluating its ability to recognize
new, unseen images. The following code
defines a custom sampler,

StratifiedSampler, used for stratified
sampling of data. It takes class_vector as
input, which represents the class labels of
the data. The test_size parameter
determines the proportion of data to be
held out for testing. The gen_sample_array
method generates stratified train-test splits
based on the class distribution. The
sampler ensures that each split has
approximately the same distribution of
classes as the original data. It then splits
the dataset into training, validation, and test
sets using these generated indices. Finally,
it prints the number of images in each set,
fully rotated and loaded into memory. This
enables efficient and controlled feeding of
data to the model during the training and
evaluation phases.

Figure 5. Images of code and skin conditions
arranged specifically to ensure effective
learning

 2.3 - Learning Approaches towards
Data Models

 2.3.1. CNN LeNet Model

The Convolutional Neural Network
(CNN) LeNet is a class of neural networks
designed specifically for image recognition
tasks, inspired by the human visual system.
The structure of LeNet compromises of
several key components: convolutional
layers for detecting visual features, max-
pooling layers for spatial down-sampling,
and fully connected layers for decision-
making. The architecture is articulated
within the init method, while the forward
method defines how input data traverses
through these layers [3].

The following code sets up the CNN

model for artificial learning and
incorporates a method for calculating the
number of features within a flattened layer.
Once the network is defined, an instance
called net is created, and the entire
structure is deployed to a specific
computing device, often a Graphics
Processing Unit (GPU) for enhanced
computational efficiency.

Figure 6. Code to set up CNN LeNet

Before initiating image classification
training using the HAM10000 dataset,
establishing the loss function and choosing
an optimizer with the Cross-Entropy and
the Adam functions are crucial. These
components play critical roles in the
training process, influencing how the model
learns and adapts over time. The Cross-

Entropy loss defines how much the model's
predictions deviate from the ground truth
(sample image), which help quantify the
model's performance and utilizes the
following formula:

 [7]

The minimization of the Cross-

Entropy loss indicates a higher accuracy on
unseen images. This, in turn, steers the
learning process towards producing
probability distributions that align closely
with the true class distributions in the
training data. Defining the Adam optimizer
before training ensures that the CNN
follows a strategic path during optimization,
adjusting its parameters effectively based
on the observed gradients.

Afterwards, we can start to train the

model. The provided code is a training loop
for the CNN LeNet using PyTorch. Its
primary goal is to train the network over 10
epochs on HAM10000 Image dataset and
monitor its performance:

1. Initialization: The code sets the
number of training epochs
(num_epochs) and initializes lists to
store training and validation
metrics, including accuracy and
loss.

2. Training Loop: For each epoch, the
code iterates over batches of
training data (train_data_loader),
computes the loss, and performs
backpropagation to update the
model's parameters. Training
metrics such as running loss and
accuracy are calculated and loaded
for each epoch.

3. Validation: After each epoch, the
code evaluates the CNN model on
a separate validation dataset
(validation_data_loader) to assess

its performance on unseen data.
Validation metrics, including loss
and accuracy, are printed to gauge
how well the model generalizes to
new data.

4. Monitoring: The code keeps track of
training and validation metrics over
epochs, storing them in lists for
later analysis.

The code then produces a table detailing
the progress of validation loss to provide a
learning overview of how accurately the
CNN model gauged unseen samples,
which is key for the final developments of
the analysis in this model.

Figure 7. Code and graph to provide metric
insight to CNN model training

 2.3.2 ResNet18 Model

Unlike the CNN model, the
ResNet18 architecture is a pre-built model
that uses residual blocks, where the input

to a layer is combined with the output
through a shortcut connection. This
shortcut allows the network to directly learn
the difference between the input and output
of a layer. The residual connections enable
the smooth flow of gradients during
backpropagation, which could sometimes
be absent in training very deep learning. [

To achieve this, we used the

torchvision library to load the pre-trained
ResNet18 model with weights from
ImageNet via pretrained=True. The
model's original fully connected layer is
then adjusted to match the number of
classes for the specific task (from 512 to
num_classes). Finally, the model is
transferred to a specified device (GPU or
CPU) for efficient computation. This setup
enables the use of ResNet18's feature
extraction capabilities while tailoring it to
the unique requirements of the
classification task.

Figure 8. Code used to define the ResNet18
model

We then assessed the performance
of the ResNet model using the validation
set. Similar to our method with the CNN
LeNet model, a separate validation dataset
(validation_data_loader) is employed to
assess the model's performance on
unseen data, gauging validation loss and
accuracy. The script also logs above-
mentioned metrics, capturing the evolving
dynamics of the model. It uses an iteration
method through batches of validation data
to make predictions using the model,
calculating the loss and accumulating the
number of correct predictions. Following
that, a graph is produced based on the
model’s progress. These metrics provide
and load outcomes into how well the model

generalizes to unseen data, and play a
crucial role in the results.

Figure 9. Code and graph to provide metric
insight to ResNet18 model training

3. Results & Discussion

 3.1 Confusion Matrix

Figure 10. Confusion matrix of the CNN LeNet
model

Figure 11. Confusion matrix of the ResNet18
model

The confusion matrices of the CNN LeNet
and ResNet18 models can be seen in
Figures 7 and 8. A confusion matrix is a
table that summarizes the accuracy of the
model's predictions, showing the number of
true positive, true negative, false positive,
and false negative predictions for each
class. This gives a detailed breakdown of
the model's classification accuracy and
potential areas for misclassification across
classes. The confusion matrix consists of
diagonal and off-diagonal cells. The
diagonal cells show the number of correct
predictions in each class. The lighter or
higher the value in these cells, the more
accurately the model classifies instances
from that class. Off-diagonal cells
represent misclassification. Darker or lower
values in these cells indicate instances
where the model made errors [5]. To
generate each confusion matrix, both CNN
LeNet (net) and ResNet18 (net) are applied
to a test dataset (test_data_loader), and
the resulting predictions are compared with
the actual labels.

Figure 7 shows that the CNN LeNet
model performs best at identifying classes
nv and bcc because they have the highest
values in their diagonal cells, as indicated
by their bright color in comparison to the
rest of the class. However, many of the off-
diagonal cells are darker or have lower
values, indicating that the model made
mistakes. As illustrated in Figure 8,
ResNet18 outperforms the initial CNN

LeNet model, as evidenced by brighter
diagonal cells. This demonstrates how the
model more accurately classifies the image
provided to it based on the actual
conditions. The ResNet18 model also
performed exceptionally well in classifying
the nv class, as evidenced by the brightest
cell color compared to the rest of the class.
The brighter off-diagonal cells also indicate
fewer mistakes were made in comparison
to the CNN LeNet model. Overall, this
shows that the ResNet18 model works
more efficiently with fewer errors compared
to the CNN LeNet model when classifying
skin conditions.

 3.2 Grad-CAM Visualizations

Figure 12. Grad-CAM visualizations of the CNN
LeNet model

Figure 13. Grad-CAM visualizations of the
ResNet18 model

The confusion matrices of the CNN
LeNet and ResNet18 models can be seen
in Figures 9 and 10. GradCAM is a
visualization technique for interpreting the
decision-making process of CNNs,
particularly in image classification tasks. It
generates heatmaps, highlighting regions

of an input image that strongly influence the
model's predictions. It helps highlight
which features the model focuses on during
classification. GradCAM enhances the
explainability and trustworthiness of CNN-
based image classification models [6]. The
images on the left in both figures are Grad-
CAM visualizations created for the
specified target layer ("conv2") and target
class. This visualization is created using
the Grad-CAM technique on a heat map-
style visual. It highlights the regions of the
original image that made the most
significant contribution to the model's
prediction for the specified class. The
warmer the color, the more important that
region is to the model's ability to predict the
image's classification.

The image on the right in both

figures is the original image of the skin
diseases used. Through comparing the
ground truth label of the actual image with
the prediction made in the Grad-CAM in
both the CNN LeNet and ResNet18
models, both models are able to correctly
predict the skin condition. As seen in both
figures, the Grad-CAM is able to represent
the shape of the skin conditions through the
differences in colors.

4. Conclusion

It can be concluded from the data

collected that ResNet18 produced higher
overall accuracy on HAM10000 than CNN
LeNet when used to create skin disease
classifiers. This difference is most apparent
when comparing the two models ’
confusion matrix. It’s clear that the
ResNet18 model achieved more accurate
results compared to its CNN LeNet model
counterpart. This could be seen through
the brighter diagonal cells, which indicate
that the model classifies the image
provided to it based on the actual

conditions more accurately. The CNN
LeNet model performs visibly worse due to
having significantly lower values for its
diagonal cells. However, when comparing
the Grad-CAM visualizations of both
models, they performed similarly, as both
models correctly predicted the skin
conditions. However, ResNet18 was able
to highlight the center parts of the image in
warmer colors, showing that it can identify
important ‘zones’ more efficiently and
precisely, as seen in Figure 13. The CNN
model on the other hand highlighted the
surrounding skin, rather than the actual
lesion, demonstrating a less precise
identification. Therefore, ResNet18 has
shown to have more accurate results
overall on HAM10000 and should be used
in comparison to CNN LeNet when
classifying skin diseases. However, some
limitations of the research could be the
limited samples of medical data on the skin
illnesses, which may lead to a narrower
and less accurate scope of identifiable
diseases by the training model. As seen in
Figure 7 and Figure 9, both models
experienced fluctuating rates of validation
accuracy, despite the training loss
decreasing. The lack of variety in the
samples provided may have led to the
models learning the samples, rather than
the characteristics of identifying the
illnesses. Furthermore, being able to
achieve an adequate accuracy with the
models would require a substantial amount
of time and budget. Hopefully, ResNet
architecture could be used more often as a
learning model to assist healthcare
professionals in a way that the public can
access anywhere at all times (i.e. an app,
etc.). This way, we can gain more
information on skin diseases to tackle the
public health concerns they cause
worldwide.

5. Acknowledgment

We acknowledge and thank our supervisor,
Kak Stefanus, who has guided us
throughout the process of our research
paper, including data collection. We would
also like to extend our acknowledgement
and thanks to Putranegara Riauwindu for
helping to develop the code for this project.

6. References
[1] Yakupu, Aobuliaximu, et al. “The
Burden of Skin and Subcutaneous
Diseases: Findings from the Global Burden
of Disease Study 2019.” Frontiers in Public
Health, U.S. National Library of Medicine,
17 Apr. 2023,
www.ncbi.nlm.nih.gov/pmc/articles/PMC10
149786/.

[2] Flohr, C., and R. Hay. “Putting the
Burden of Skin Diseases on the Global
Map.” Wiley Online Library, British Journal
of Dermatology, 5 Feb. 2021,
onlinelibrary.wiley.com/doi/full/10.1111/bjd
.19704.

[3] “What Is a Convolutional Neural
Network?” Convolutional Neural Network,
MathWorks,
www.mathworks.com/discovery/convolutio
nal-neural-
network.html#:~:text=A%20convolutional
%20neural%20network%20. Accessed 13
Apr. 2024.

[4] “ResNet: The Basics and 3 ResNet
Extensions.” Datagen, Datagen, 23 May
2023, datagen.tech/guides/computer-
vision/resnet/#.

[5] Kulkarni, Ajay. “Confusion Matrix.”
ScienceDirect, Data Democracy, 2020,
www.sciencedirect.com/topics/engineering
/confusion-
matrix#:~:text=A%20confusion%20matrix
%20represents%20the,by%20model%20a
s%20other%20class.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149786/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149786/
http://onlinelibrary.wiley.com/doi/full/10.1111/bjd.19704
http://onlinelibrary.wiley.com/doi/full/10.1111/bjd.19704
http://www.mathworks.com/discovery/convolutional-neural-network.html#:~:text=A%20convolutional%20neural%20network%20
http://www.mathworks.com/discovery/convolutional-neural-network.html#:~:text=A%20convolutional%20neural%20network%20
http://www.mathworks.com/discovery/convolutional-neural-network.html#:~:text=A%20convolutional%20neural%20network%20
http://www.mathworks.com/discovery/convolutional-neural-network.html#:~:text=A%20convolutional%20neural%20network%20
http://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20other%20class
http://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20other%20class
http://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20other%20class
http://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20other%20class
http://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20other%20class

[6] Reiff, Daniel. “Understand Your
Algorithm with Grad-CAM.” Medium,
Towards Data Science, 12 May 2022,
towardsdatascience.com/understand-your-
algorithm-with-grad-cam-d3b62fce353.

[7] Anisimova, Inara. “Cross-Entropy in
ML.” Medium, UnpackAI, 4 January 2021,
https://medium.com/unpackai/cross-
entropy-loss-in-ml-
d9f22fc11fe0#:~:text=Cross%2Dentropy%
20can%20be%20calculated,*%20log(Q(x)
)

http://towardsdatascience.com/understand-your-algorithm-with-grad-cam-d3b62fce353
http://towardsdatascience.com/understand-your-algorithm-with-grad-cam-d3b62fce353
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0#:~:text=Cross%2Dentropy%20can%20be%20calculated,*%20log(Q(x))
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0#:~:text=Cross%2Dentropy%20can%20be%20calculated,*%20log(Q(x))
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0#:~:text=Cross%2Dentropy%20can%20be%20calculated,*%20log(Q(x))
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0#:~:text=Cross%2Dentropy%20can%20be%20calculated,*%20log(Q(x))
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0#:~:text=Cross%2Dentropy%20can%20be%20calculated,*%20log(Q(x))

